
Reprinted from BEHAVIORAL SCIENCE, Vol. 7, No. 1, January 1962 

The Use of Simplif ied Programming Sys­
tems in IBM 650 Data Processing 
Linton C. Freeman, Syracuse Univer­
sity Computing Center. 

Computers are no longer the esoteric play­
things of mathematicians and engineers; they 
have become the day-in-day-out workhorses 
of data analysis. As they get wider applica­
tion, there is increasing demand for the pro­
duction of programs for the solution of new 
problems. But the number of programmers 
who are able to prepare all these new pro­
grams is limited. 

This problem is compounded by the fact 
that efficient machine use requires that the 
program writer be thoroughly familiar both 
with programming procedures and with the 
details of the problem at hand. Since most 
programmers are trained in mathematics or 
engineering, this condition raises no special 
problems for the mathematical or engineer­
ing use of the computer. For the behavioral 
scientist, however, it often creates some ad­
ditional difficulties. 

Very few individuals are trained both in 
computer programming and in a behavioral 
science discipline. So behavioral scientists 
often have trouble in communicating the de­
tails of their data processing problems to 
programmers, and programmers are unable 
to find behavioral scientists who are willng 
and able to learn the intricacies of program­
ming. 

What is needed are individuals trained in 
both areas; in a behavioral science and in 
computer programming. In the long run, the 
best policy might be to encourage—even re­
quire—behavioral science graduate students to 
develop at least the most basic skills in pro­
gramming. It is fairly clear that such skills 
will be important to future generations of be­
havioral scientists. But in the meantime, some 
quicker means of meeting our immediate 
needs must be found. 

For the most part, people who are actually 
conducting research in the various behavioral 
sciences have neither the time nor the back­
ground to become specialists in program-

1 The preparation of this report was supported 
by research grant NSF-G14S94 of the National Sci­
ence Foundation. 

ming. Altogether too much time is required, 
both to learn the basic skills and to apply 
them to problems as they arise. Some sort of 
short-cut must be employed; and fortunately 
such a short-cut is available in the form of 
various simplified programming systems 
which are easy to learn and quick to apply. 

The number of simplified programming 
systems which have been developed is legion. 
For the most widely used computer, the IBM 
650, there are twenty or thirty interpretive 
systems and compilers in general use. Most 
statistical programs are prepared according 
to one or another of these simplified schemes, 
but the choice among them is often a matter 
of personal taste on the part of the writer. 
The various programming systems, however, 
have different strengths and weaknesses; a 
choice among them should be made in light 
of the nature of the problem rather than on 
the basis of some arbitrary whim of the pro­
grammer. 

Some writers have explored the details of 
a few of these programming systems (Curtz, 
Riordan, & Spohn, 1960; Arden & Graham, 
1959; Kanner, 1959), but no general rules for 
choosing among them have been developed. 
The present paper represents an attempt to 
explore some of the problems of choosing 
among a number of programming systems 
for the IBM 650. Several systems will be 
compared in terms of their efficiency in han­
dling various phases of a typical problem of 
statistical data analysis which might arise 
in a behavioral science setting. 

Three factors might be considered in choos­
ing a programming system for a particular 
problem: (1) the anticipated number of runs 
for which the program is to be used, (2) the 
relative amount of input and output as com­
pared with the amount of internal machine 
computation involved in the problem, and 
(3) the availability of machine time for solu­
tion of the problem. By taking these three 
factors into account we are provided with a 
rational basis for choosing a programming 
system in a particular case. 

The problem selected for study is typical 
of those confronted in statistical data analy­
sis. It involves the computation of chi-square 
as a test of significance in a 2 X 2 con-



118 COMPUTERS IN BEHAVIORAL SCIENCE 

tingency table. Such a problem involves a 
relatively large amount of input and output 
and employs a straightforward series of arith­
metic operations. The logic is simple, and 
there is no need for any extensive iterative 
processes. From analysis of a problem of this 
sort we can infer some of the consequences 
of using various programming systems for the 
solution of many similar statistical analyses. 

All in all, seven versions of the chi-square 
program were prepared for the IBM 650 
computer. Two of these programs were writ­
ten in the basic 650 machine language and 
five were prepared according to simplified 
systems. Machine language is relatively more 
difficult to learn and extremely tedious to 
write. The other systems are all easier to 
learn, and all of them speed up the writing 
process. 

The two machine language programs were 
prepared in order to provide a basis for com­
parison with the simplified systems. One was 
a hand-optimized version written for the regu­
lar drum storage unit of the computer, and 
the other was written for the immediate ac­
cess storage unit. The immediate access unit 
has a small capacity and cannot be used for 
longer programs, but it represents the fastest 
possible program for the 650. It is the ideal 
which is approximated by the other pro­
grams. 

Simplified programming systems may be 
roughly categorized according to their prin­
ciple of simplification. Basically, they may 
be classified into two types: interpretive sys­
tems and compilers. An interpretive system 
is a superprogram, written in machine lan­
guage and stored in the machine, which 
causes the computer to read simplified in­
structions and translate them into its own 
language. Each instruction is read, inter­
preted, and executed; thus, in effect, the com­
puter is programmed to simulate another, 
simpler, machine. 

A compiler is a program which causes a 
computer to read a set of simplified instruc­
tions, translate them into machine language, 
and prepare a new set of instructions in ma­
chine language which may then be used to 
solve problems. In an interpretive system 
each instruction is translated each time the 

program is run; in a compiler the transla­
tion occurs only once, before the program is 
run. 

Although there are many interpretive sys­
tems and compilers available, only a few of 
them are in general use. In this analysis an 
attempt was made to select five of those most 
commonly encountered and to compare them. 
Two interpretive systems and three com­
pilers were chosen. The interpretive systems 
were the Bell Interpretive System (Wolon-
tis, 1956) and the Revised Bell Lab Inter­
pretive System (Hall, undated). The com­
pilers were GAT (Arden, undated), IBM 650 
Fortran (650 Fortran, 1960), and the Sym­
bolic Optimum Assembly Program, SOAP 
(SOAP II, 1957). 

Each of these systems represents a sim­
plification of machine language. It is difficult 
to say which is easiest to prepare, but For­
tran must be considered a strong contender 
for that position. Writing Fortran programs 
is almost exactly like writing down algebraic 
expressions. GAT is similar, but it places 
more restrictions on the use of symbols. The 
two Bell System programs probably rank 
next; they are machine languages, but simple 
ones. And SOAP is closest to actual 650 ma­
chine language, but still a great deal less 
tedious to produce. It is likely that very few 
programmers would argue with the rankings 
of these systems in terms of difficulty of pro­
gram preparation listed in Table 1. 

T A B L E 1 
PROBABLE D I F F I C U L T Y OF PROGRAM PREPARATION OF 

SEVERAL PROGRAMMING S Y S T E M S 

Programming System Level of Difficulty 

Machine Language 
SOAP 
Bell Systems 
GAT 
Fortran 

5 
4 
3 
2 
1 

When a compiler is used in preparing a 
program, the program must be run through 
the machine in order to translate it into ma­
chine language. Some compilers require one 
initial pass, but others entail two or even 
three. Even when programs are prepared by 
means of interpretive systems or in machine 
language an initial pass is customary. This 
is because typically such programs are writ-



COMPUTERS IN BEHAVIORAL SCIENCE 119 

ten one instruction per card. If they are left 
in that form they are slow to load, so one-
per-card programs are usually run into the 
computer and punched out at six or seven 
instructions per card. Thus their loading 
speed is increased for subsequent data proc­
essing runs. In any case, an initial assembly 
run is customary in order to provide an 
efficient final program. The assembly times 
for the chi-square program are shown in 
Table 2. 

TABLE 2 
ASSEMBLY TIMES FOR THE VARIOUS PROGRAMMING 

SYSTEMS FOR THE CHI-SQUARE PROBLEMS 

Programming System 

Fortran 
GAT 
SOAP 
Bell System 
Revised Bell System 
Machine Language (Drum) 
Machine Language (Core) 

Time (in seconds) 

427 
165 
146 

78 
78 
4S 
4S 

Table 2 shows that the order of the as­
sembly times for these programs is roughly 
the inverse of their programming difficulty. 
The only exceptions are the Bell Systems. 
They are easier to write than SOAP programs, 
and yet they assemble more quickly. This is 
because SOAP is a compiler—its assembly 
phase includes translation into machine lan­
guage, while Bell System programs are trans­
lated later during computation. We might 
therefore expect SOAP to produce a more 
efficient program. 

Once a program has been assembled it is 
ready to run. It may be used in the solution 
of problems, but first it must be read into 
the machine. The various program read times 
are listed in Table 3. 

Here the SOAP and machine language pro­
grams are outstanding. Fortran and GAT 

TABLE 3 
PROGRAM READ TIMES FOR THE CHI-SQUARE 

PROBLEM 

Programming System Time (in seconds) 

Revised Bell System 
Bell System 
GAT 
Fortran 
SOAP 
Machine Language (Drum) 
Machine Language (Core) 

72 
65 
52 
33 

7 
5 
5 

are slower since they both require that stand­
ard subroutines be read in along with the 
program. And the Bell Systems require that 
an interpretive program be included which 
will allow the computer to translate each 
Bell instruction into machine language. 

Once the program is loaded data can be 
entered and problems solved. Table 4 shows 
the number of chi-square problems which can 
be solved per minute using each of these pro­
gramming systems. 

TABLE 4 
NUMBER OF CHI-SQUARE SOLUTIONS PER MINUTE FOR 

VARIOUS PROGRAMMING SYSTEMS 

Programming System 

Bell System 
GAT 
Fortran 
Revised Bell System 
SOAP 
Machine Language (Drum) 
Machine Language (Core) 

Number of Runs 
(per minute) 

39 
49 
58 
61 

100* 
100* 
100* 

* These represent limits imposed by the output 
unit of the computer. A modification of the pro­
gram output form could speed up these programs. 

The SOAP and machine language programs 
turn out to be faster than the others. But 
since their output was restricted by a ma­
chine limitation, a test was made by running 
the programs without their read and punch 
instructions. 

TABLE 5 
NUMBER OF CHI-SQUARE SOLUTIONS PER MINUTE 

WITHOUT READ OR PUNCH INSTRUCTIONS 

Number of Runs 
(per minute) Programming System 

Bell System 
Revised Bell System 
GAT 
Fortran 
SOAP 
Machine Language (Drum) 
Machine Language (Core) 

55 
84 

220 
326 
341 
494 
930 

The results listed in Table 5 indicate the 
actual computation speed of these systems. 
Given this information, there is no doubt 
that if rate of computation were the only 
consideration, core machine language would 
be the only choice. The core, however, has 
an extremely small capacity, and can be used 
only when the problem is not too large. Fur­
thermore, machine language is a great deal 



120 COMPUTERS IN BEHAVIORAL SCIENCE 

more difficult to write than other systems, so 
its use might not always be economical. But 
the choice among the simplified systems is 
not always obvious. The tables above reveal 
strengths and weaknesses in each of the sim­
plified programming systems. In any given 
situation a choice among them can be made 
in terms of these strengths and weaknesses. 

Since they require less computer time both 
for assembly and program running, the ma­
chine language systems seem to be called for 
whenever machine time is at a high premium. 
Then, too, if a program is to be used quite 
regularly and over an extended period of 
time, the greater speed of machine language 
programs makes them desirable. In other 
cases, the simplified systems seem satisfac­
tory. 

If we compare the machine language sys­
tems with SOAP, which is considerably easier 
to use, it becomes apparent that unless the 
program is going to be used almost all day 
every day, SOAP will be satisfactory. In a 
situation where machine time is relatively 
unavailable, or when a program is to be run 
quite often, SOAP seems to be the choice 
among the simplified systems. This is par­
ticularly true when there is a great deal of 
input and output. In such a case SOAP, with 
its relatively greater read and punch speed, 
would provide more output. 

Fortran would be a good choice only when 
a great number of runs could be anticipated. 
Its excessive assembly time precludes its use 
for one-shot programs. Furthermore, its slow 
rate of input and output suggest that it might 
best be employed on problems which have 
little input and output but a relatively large 
amount of internal computation. 

In contrast, GAT assembles and accepts 
input and produces output relatively quickly, 
but its rate of computation is slower. This 
suggests that the appropriate application of 
GAT is for problems involving a small amount 
of internal computation, when only one or 
a few runs are anticipated. 

Finally, the original Bell System seems 
wholly useless, and the Revised Bell System 
might best be employed for problems involv­
ing vast amounts of input and output, rela­
tively little internal computation, and few 
runs. It is able to handle input and output 
faster than GAT or Fortran, but its rate of 
computation is considerably slower. 

REFERENCES 
Arden, B. W. Generalized algebraic translator (GAT), 

IBM 650 Program Library, 2.1.007, Undated. 
Arden, B., & Graham, R. On GAT and the con­

struction of translators. Communications 
Assoc. Computing Machinery, 1959, 2, 24-26. 

Curtz, T. B., Riordan, J. F., and Spohn, M. A com­
parison of 650 programming methods. Com­
munications Assoc. Computing Machinery, 
1960, 3, 663-671. 

Hall, D. J., Revised Bell Laboratory interpretive sys­
tem. IBM 650 Program Library, 2.0.015, Un­
dated. 

Kanner, H. An algebraic translator. Communications 
Assoc. Computing Machinery, 1959, 2, 19-22. 

650 Fortran—automatic coding system for the IBM 
650 data processing system. IBM Reference 
Manual, 1960. 

SOAP II for the IBM 650 data processing system. 
IBM Reference Manual, 1957. 

Wolontis, V. M. A complete floating decimal inter­
pretive system for the IBM 650 magnetic 
drum calculator. IBM Technical Newsletter, 
1956, 11. 

(Manuscript received April 28, 1961) 


