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ORDINAL MEASURES OF
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This paper seviews standards for measures of association. In particular, standards for
order-based measures are examined. The concept of monotoaicity is showa (0 be
ambiguous as it has been applied in this area, and it is clarified. The result is the specifica-
tion of three — instead of the usual two — kinds of monotonic selations. These three
monotonic models provide the basis for defining three non-arbitrary measures of ordinal
association. '

Eleven order-based measures are reviewed in the light of measurement standards as
extended by the clarification of monotonicity. Eight are shown either 10 embody non-
order-based clements or to contain ad hoc characieristics. The remaining three are shown
to be members of a single family of monotone based ordinal measures that can be applied
where ever their particular monotone models are appropriate.

INTRODUCTION

Often, perhaps too often, in the social sciences limitations in our
theories or in our data put us in a position where we can specify only
ordinal hypotheses. *‘The greater the A, the greater the B,”’ we say, or
*‘The greater the A, the less the B.”’ The words, *‘greater’’ and *‘less’’
indicate that our observations must be at least ordinal. But the lack of

* | want 10 express my deep appreciation (0 those people who gave me enough significant
feedback on eaclier versions of this paper 10 prevent me from rushing imo print with
more, and more important, errors than the present version still contains. Among these,
Katie Faust, Suc Freeman, Timlynn Babiisky, Mike Migalski and Tom Nelson are
outstanding.
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specificity in the hypotheses themselves suggest that — even if we have
recorded our data at an interval or ratio level — it would be inappro-
priate to use a measure of association based on a linear equation or any
other stronger than ordinal model. Indeed, data cannot be brought to
bear on such inherently ordinal hypotheses unless we have appropriate
statistical tools — tools that permit the direct examination of the order
in relationships. So in these cases we need statistics that are responsive
to order but that do not depend on the magnitudes of the variable we
observe. :

Fortunately for us, various statisticians and social science methodo-
logists have put in a good deal of effort toward developing strictly
order-based measures of association (see Kendall, 1948; Kruskal, 1958;
and Goodman and Kruskal, 1959 for reviews of much of this
literature).

Anyone who has ever called for all the statistics in the Frequency
Tables Program of BMDP or the CROSSTABS Program of SPSS
knows that there are a great many seemingly order-based measures that
are available for use. The only trouble is that with so many it is difficult
to make a reasonable choice among them in a particular application.
Moreover, as we shall see, much of the literature surrounding these
statistics is confused and confusing. Many turn out to be not strictly
order-based. Currently, then, choosing among ordinal measures on a
rational basis is just about impaossible.

‘The present paper is intended to contribute to clarifying ambiguities
about the measurement of ordinal association. It will draw on and
extend ideas introduced by Goodman and Kruskal (1954) and Costner
(1965). Here the emphasis will be on problems of modelling ordinal
association and, in particular, on monotonic models. Some older
order-based statistics will be re-examined. And finally, a family of three
acceptable ordinal measures will be specified.

In the first section a set of established standards for measuring
ordinal association will be reviewed. That review will be followed by a
clarification of the concept of monotonicity. Then a number of
standard measures will be examined in the light of both established
standards and the clarified monotonocity idea. Finally, three measures
will be shown to be members of an interrelated family of non-arbitrary
indices of ordinal association.
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STANDARDS: WHAT ON ORDINAL MEASURE
SHOULD LOOK LIKE

Explicit standards for measuring association have been developed and
set down in papers by Goodman and Kruskal (1954) and Costner
(1965). The Costner treatment, however is more general. It is intended
to set standards for any measure of association, while Goodman and
Kruskal limited their focus to measuring association on observations
recorded in cross-classification tables. It is appropriate therefore to
begin with more general Costner treatment.

Costner (1965) developed an earlier idea by Guttman (1941) and
proposed that any measure of association — ordinal or otherwise —
should exemplify a general proportional reduction in error (PRE)
model of the following form:

E, - E,
E,,

where E, is an index of error in guessing some property of a variable in
the light of information about another variable, and E, is the same
index used when guesses are made in the absence of such information.
A PRE index, then, is an error ratio. It takes a value of 0 only when
information yielded by the predictor variable is of no help. It is | only
when information from the predictor variable eliminates all error. And
it can always be interpreted as the proportion of error in making guesses
about a variable that can be eliminated by taking information provided
by another variable into account.

Today the PRE notion is widely accepted. Observers agree that the
PRE idea results in a very powerful convention and that it can be used
as a basis for evaluating any measure of association. It guarantees a
meaningful index of the amount or degree of association. If, for
example, a PRE measure yields a result of .57, we can answer questions
about what that number means. It means precisely that 57% of our
error in guessing something about Y can be eliminated when we take
something about X into account.

But the PRE convention, though powerful, still leaves something
out. It provides no guidance on the interrelated prablems of what it is
about a variable that we are to guess and how we should measure error.
The solutions to these problems rest in specifying explicit models for
“‘perfect association’’ and for scaling departures from that model in a
meaningful way. When we have both an association model and an error
model, the rules for guessing and for measuring error should follow.

PRE =
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Without such a modcl, the door is open for the construction of
completely arbitrary and ad hoc, though well scaled, measures.

Costner was aware of at least part of this problem. He said that ‘‘the
meaning of a relationship of a specified ‘degree’ remains ambiguous
unless, implicitly or explicitly, its ‘form’ or ‘shape’ is specified.”” When
it came to dealing with measures, however, his specifications were
always implicit. Nowhere in the Costner paper is there an explicit
discussion of the form or shape of the relationship on which any order-
based measure is based. _

The paper by Goodman and Kruskal (1954) comes closer to address-
ing this issue, at least so far as constructing ordinal measures is
concerned. They proposed that an ordinal measure should be based on
the probabilistic notion of the ‘optimal prediction of order.’’ The word
“optimal’’ here refers to some notion of perfect association, but,
again, their model was implicit. In their own words, ‘‘There is vague-
ness in the idea of completely ordered association.””

Nevertheless, Goodman and Kruskal did present a systematic way of
looking at relationships between two ordered polytomies. Let us
assume, they suggested, that we have data that can be displayed in an
ordered contingency table containing cross tabulations of observations
on two variables, X and Y. Both X and Y are measured at, at least, the
ordinal level. Thus, X = {x;,X,, . . ., Xy} wherex; > x;, x; < xjorx; = x;
forall xin X.Y = {y,, ¥5 . . ., Yy} must, of course, be similarly
ordered.

Any ordinal measure must, from this perspective, focus somehow on
the relationship between order in X and order in Y. This cannot be done
without comparing observations in terms of which is greater and which
is less on each variable. In particular, it is convenient to focus on pairs
of observations to determine the degree to which they are in the same or
in the inverse order on the two variables. To develop the Goodman and
Kruskal perspective (and for later discussion of particular measures) it
will be useful to distinguish among various kinds of pairs that might be
found in ordered contingency tables. In particular, we will need the
following ideas. Let

N = number of cases observed
and

P = total number of pairs of observations
= (N2 - N)/2.

Now P may be partitioned into five kinds of pairs:
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C = number of concordant (same order) pairs
D = number of discordant (inverse order) pairs
Xs = number of pairs tied only on X
Y, = number of pairs tied onlyon Y
Z = number of pairs tied on both X and Y

and therefore,
P=C+D+Xo+ Yp+ 2.

Goodman and Kruskal presented an intuitive conception of optimal
order. They argued — at least indirectly — that if all pairs in a con-
tingency table are tabulated in C — if every pair falls such that x; > x;
andy; > y;, there is some kind of “‘perfect association’’ between X and
Y.t Similarly, if all pairs are tabulated in D — if for everyiand j, x; > x;
and y; < y, then again “‘perfect association’’ obtains. They proposed
then, that these two ‘‘optimal’’ orders could be used as the basis for
constructing measures.

In cases where neither of these pure orders is exhibited, we need a way
of determining the degree to which one or the other dominates. We can
choose pairs of observations at random (with replacement) and record
whether each pair contributes to the C tally or to D. Those associated
with C contribute toward one ideal type and those associated with D to
the other. So an index based on the difference between C and D reveals
the degree to which the observed data approach one or the other ideal.
Constructing a measure, then is a straightforward task of balancing C
off against D and seeing how much the arrangement of the data
approaches one pure order or the other,

A raw index like C - D is obviously inappropriate. But as an alter-
native, Goodman and Kruskal proposed that two probabilities be
calculated, the probability of C and the probability of D. Their model
for an ordinal measure of association, then, is simply the difference
between these two probabilities, Pr(C) - Pr(D).

Clearly, any measure consistent with this model is order-based. Its
magnitude depends only on the degree to which the observations
approach one or the other ideal form of ordered relationship. Under
statistical independence, since C = D, the measure yields a value of 0. It

t Throughout this paper 1 will refer to pairs of observations on X and Y. When orders are
compared, 1 will specify x; > x; and y; > y; to describe concordance or agreement in
order. Strictly speaking, one might add the case where x; < x; and y; < y; as the *‘other
half** of concordance. But, since we are dealing with unordered pairs, we can always
exchange the labels, i and j, so the first expression fits and the *‘other half*’ is unnecessary
as well as redundant.
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grows only as departures from independence are ordered — one way or
the other. It grows, that is, only with ordinal departures from inde-
pendence, as C and D increasingly depart from the equality. When C is
at its maximum and D ~ 0, all pairs fall in the same orderin Xand Y
and the measure takes a value of 1. And when D is at its maximum and
C = 0, all pairs fall in inverse order and the measure is —1. The
magnitudes of values falling between 0 and an absolute value of 1 indi-
cate how much more likely it is to see the dominant as opposed to the
non-dominant order between the two variables.

Thus, the Goodman-Kruskal approach to ordinal measurement
suggests the direction in which to seek an answer to the problem of
specifying the ‘‘shape’’ of an order-based measure of association. But
this approach still leaves a certain degree of ambiguity. Although it
provides a model for taking order — and order alone — into account
when constructing a measure, it does not provide a general solution to
the problem of what is meant by completely ordered association.

The problem is that there are several ways to calculate the probabili-
ties of concordant and discordant pairs. Goodman and Kruskal suggest
that they be calculated conditional on both x;not = x;and y;not = y; —
that all pairs of observations that are tied in either X or Y (or both) be
excluded from computations. Other writers that accept the general
Goodman and Kruskal approach have proposed that only pairs that are
tied in X be excluded, or only those that are tied in Y or whatever.
Clearly, each of these conventions for calculating Pr(C) and Pr(D)
embodies a different model of completely ordered association. What is
still lacking is a general way of thinking about alternative notions of the
shape or form of complete association in the ordinal case.

More recent attempts to confront this problem have drawn on the
mathematical idea of monotones (Somers, 1962; Leik and Gove 1969,
1971). But monotonicity, it turns out, is not well understood by these
writers. The various notions of monotonicity contained in this
literature are for the most part somewhat loose and incomplete. As a
consequence, no systematic overall model or set of models for ordinal
association have been developed. Some apparently order-based
measures are not truly based on order, while others have a distinctly
ad hoc character.

In the next section, therefore, we shall examine the idea of mono-
tonicity and attempt to develop a systematic basis for thinking about
the form or shape of complete ordinal association.
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ON MONOTONICITY

Mathematically, monotones are kinds of functions. There are two
broad classes of monotonic functions, strong (or strict) and weak. Then
each of these classes is partitioned into two more subclasses according
to direction. Thus, among strong monotonic functions, one is called
increasing and one decreasing. Correspondingly, one of the weak
monotonic functions is called non-decreasing and the other non-
increasing.

An increasing monotonic function is a subset of the X by Y Cartesian
product such that for every pair of elements from X, where x; > x;, then
¥ > y;- If the function is decreasing, given a pair of elements in X where
x; > x;, theny; < y;. And, or course, if these functions are ontot, if x; =
x;, theny; = y; and both increasing and decreasing monotones are one-
to-one correspondences. Furthermore, a function is non-decreasing if
for every pair of elements in X, where x; > x;, then y, not < y;, and non-
increasing if, for every x; > x;, y,not > y;.

Intuitively, all this permits the description of various kinds of
ordered relationships. Increasing and non-decreasing monotonic
functions are direct; X and Y grow together. Decreasing and non-
increasing ones are inverse; they grow in opposite directions. Strong
monotonic functions are characterized by regular growth (or, if the
function is decreasing, decay); thus, increases in X are always accom-
panied by increases (or, for decreasing functions, decreases) in Y and
vice-versa. Weak monotonic functions, in contrast, capture a situation
of possible step-wise growth. Increases in X are accompanied by either
increases (or, for the non-increasing function, decreases) or by a lack of
change in Y.

Increasing and non-decreasing monotonic functions are illustrated in
Figure 1. As the pictures show, since they are functions, all of these
mathematical monotones are at least many-to-one relations. Thus they
are mappings where there is a unique element in the range for every
element in the domain.

This same vocabulary is used by statistical writers in discussing order-
based measures. The only problem is that the words are used in a
slightly different way. They would all agree, | suspect, that what the

1 In the statistical analysis of contingency tables, such functions must always be onto
since otherwise our tables could have an indeterminate number of blank rows and/or
columns. Such rows or columns that contain no non-zero entries can contribute nothing
to the analysis of ordinal association. So if we simply drop empty rows or columns before
analysis begins we will always be dealing with onto mappings.
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FIGURE {. A — Strong Monotonic Function
B — Weak Monotonic Function

mathematician calls a strong monotone is a strong monotone. But the

~ mathematician’s weak monotone seems also to be classed as strong

(Leik and Gove, 1969) and the expression ‘‘weak monotone*® is
sometimes reserved for an entirely different object.

At first glance, the statistician’s weak monotone looks exactly like
the one defined above. Given X and Y as above, we have a statistician’s
non-decreasing relation if for every pair of elementsin X, x; > x;, y;, >
y; and a non-increasing one if for every x; > x,, y; < y,. But there is a
critical difference. While the mathematician restricts the definition to
functions, the statistician includes non-functional or many-to-many
relations.

Figure 2 shows a mapping that forms the monotonic basis for Good-
man and Kruskal’s (1959) statistic, gamma. It is monotonic in the
important sense that observations in X and Y are in the same order for
all pairs in which both X and Y observations are ordered. There are no
inversions in order. But neither the mapping shown in Figure 2 nor its
inverse is a function. It is monotonic, but not in the usual mathematical
sense. :

This suggests that from the perspective of providing models of
ordinal relationships we have not two, but three, basic kinds of
monotones (and, of course, two directions for each). The mathe-
matician’s strong monotone is a monotonic one-to-one correspondence
from this perspective. The mathematician’s weak monotone is a
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monotonic function. And the statistician’s monotone is a monotonic
relation.

The implications of these ideas for data analysis can be seen by
translating them into contingency tables. Figure 3 shows tables that
embody the three kinds of monotonicity described here. An entry of
“P” in a cell indicates a permissible observation according to the
relevant conception of monotonicity, and cells are left blank where
observations that violate the model might fall.

By inspecting these tables we can see, in each case, how various kinds
of ties must be treated under the conditions imposed by that monotonic
model. In all three cases observations that are tabulated in Z are
permissible. Those are the pairs that are contained within a single cell of
a table. In effect, they are nothing but ‘‘replications.”’ As such, they
neither contribute to nor detract from the degree to which the data fit
the model. The problem, then, is how to deal with X, and Y, ties.

X, ties are generated by pairs that fall in different rows but the same
column of the table. In such cases, pairs are tied on the X variable, but
ordered on Y. Correspondingly, Y, pairs fall in different columns but
the same row and are tied in Y. The model of monotonic one-to-one
correspondence requires that neither of these kinds of ties be present. If
cither kind appears, the relation is not one-to-one. The monotonic
function, however, when mapping from X to Y, excludes only pairs
counted in X,. Such pairs that are tied in X indicate a mapping from one
point in X to two in Y. Such a mapping is not many-to-one. However,
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pairs that are tied in Y are not harmful under this model. They are part
of the “‘many’’ in the many-to-one mapping and as such are per-
missible. In the monotonic relation model both kinds of ties are
permissible. Since this is a many-to-many mapping, neither kind of
tying is prohibited under the model.

If we combine these conceptions of monotonic relations with the
Goodman and Kruskal probabilistic model of an order-based measure,
we can specify exactly the forms that monotonic order-based measures
must take. We end up, then, with three models of complete ordinal
association. The one based on a monotonic relation must have the form

c D
C+D C+D’

The monotonic function from X to Y must have the form

C _ D
C+D+ X, C+D+ X,

And the monotonic one-to-one correspondence must have the form

C i D
C+D+Xo+Yy C+D+X+Y,

These three kinds of monotonic order-based models exhaust all the
possibilities. If we remember that we could calculate the monotonic
function either on a data matrix or its transpose (thereby using Y, rather
than X, in the denominator), it is clear that no other kinds of measures
that are strictly order-based could exist. Indeed, when PRE realizations
of each of these models is specified, the job is done. Other strict ordinal
measures that meet the criteria specified here cannot exist.

These three models embody explicit specifications of what we mean
by a perfect relationship. Thus, the problem of specifying the form or
shape of an ordinal relationship is solved without asserting ad hoc rules
for handling tied observations. Given these models, we know how to
treat ties and we can generate measures in which we can make explicit
not only our model for degree of association, but our model for its form
as well. All that remains to be done is to find or construct measures that
comply with these models and show that they comply also with
Costner’s PRE standard. In the next section, therefore, we will review

some existing measures and see how they ‘‘stack up’’ in the light of
these new criteria.
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ORDINAL MEASURES: A REVIEW

In an exhaustive review of the older literature, Kruskal (1959) showed
that the idea of measuring ordinal association began around the turn of
the century with work by Galton. But the earliest measure that still is in
current use is the rho that was developed by Spearman (1904). Essen-
tially, rho was introduced as a convenient computing formula for
Pearson’s r when the data were made up of the first N natural numbers.
Kruskal (1958) has shown that rho can be given an order-based PRE
interpretation, but that interpretation involves counting orders, not
only on pairs, but on 3-tuples as well.

Costner (1965) saw a problem in this kind of counting. He rejected
rho, arguing that it ‘‘may be interpreted in a proportional-reduction-
of-error sense only by specifying rather complex rules and definitions,
and such complexity suggests that only in very few, if any, actual
research situations would the investigator be interested in the relative
accuracy of estimation.”” But Costner saw only part of the problem.
The kind of counting involved in rho results in a completely arbitrary
weighting of concordances and discordances. The result is a statistic
that can depart from 0 even when C is exactly equal to D — when there
is no ordinal departure from independence. Thus, rho is not simply
order-based. .

Kendall (1938) introduced an alternative to rho called tau. Tau was
implicitly based in the idea of a monotonic one-to-one correspondence.
It was defined by Kendall as

C D C-D

T = — o — =

P P P

where all observations on both variables are strictly ordered; where
either x; > x; orx; < x; for all x in X and similarly for all y in Y. Thus,
given these conditions, Xy = Yy = Z = 0, P is simply the sum of C and
D and tau is an index of the overall tendency of pairs to be in the same or
the inverse order in X and Y.

From the PRE perspective we think of tau as involving two kinds of
guesses. First we guess the order of pairs of observations in the depen-
dent variable (Y) without reference to the independent variable (X). So
we randomly choose pairs of observations from the Y distribution. We
shall guess that y, > y; with a probability of 1/2. Our expected error
from this operation is (C + D)/2. This is E;. Now we repeat this
guessing operation with X taken into account. Here we look at Cand D,
and if C > D we guess concordance uniformly for all pairs; otherwise
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we guess discordance. The expected error, E,, is either C or D, which-
ever is smaller. Assume C >*D. Then

(C+D)2-D
(C + D)2
C-D
“Cc+D "’

Since without ties, Xg = Yo = Z = 0,thenP = C + D, and weend up
with tau. Of course, if D > C, the numerator becomes D - C, but in
general, if weletitbe C - D, the PRE version can take the same sign as
tau as defined by Kendall.

All in all, then, tau seems to meet all our criteria for an ordinal
measure of association. Its application, however, is restricted to those
situations where our data show no ties in either X or Y. This is a serious
limitation and it means that tau is not the sort of general ordinal statistic
we are seeking.

So the search began. First Kendall himself, then a whole host of other
statisticians and research scientists set out on a quest for generalizations
of tau that would relax the restriction on tied observations and still
permit the systematic study of order relations between variables.

The measure called 7, was Kendall’s (1948) own attempt to grapple
with this problem. The measure

PRE =

_ C-D
VC+ D+ X)(C+D+ Yy

has as its denominator the geometric mean of the number of pairs in the
marginal distribution of Y that are not tied on Y and the similar number
for X. That denominator was designed to permit 7, to take a value of 1
in cases of *‘perfect association.’ It was not at that time at all clear what
“‘perfect association’’ meant, so the resulting calculations were from
the current perspective simply ad hoc. To make matters worse, this
denominator failed in its attempt to give the statistic an upper limit of 1
in all cases.

7. was suggested by Stuart (1953) in order to compensate for a per-
ceived ‘‘weakness’’ of.7,, the fact that it could never reach a value of 1
when the number of rows in the table on which it was computed was
unequal to the number of columns. Stuart ‘‘corrected’’ for this
‘“‘problem’’ by constructing a new denominator that was a function of
the minimum of the number of rows and the number of columns. This
correction permits 7, to achieve a value of “‘almost’’ 1. But Stuart’s
efforts were completely misguided. The whole point is that he and

>
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Kendall were seeking a monotonic one-to-one correspondence, and
such a monotone can exist only when the number of rows is precisely
equal to the number of columns. Indeed, Stuart’s statistic is completely
without a monotonic relationship model of any sort.

Goodman and Kruskal’s (1954) gamma is a straightforward order-
based measure of association based on the model of the monotonic
relation. From the discussion above we know that a monotonic relation
model must be of the form

¢c _b c¢c-bp -
C+D C+D C+D"’

since Xy, Y, and Z are all excluded. And that is exactly the expression
that Goodman and Kruskal used to define gamma. This means that, in
gamma, ordinal predictions are made only for those pairs of observa-
tions that are untied. Pairs are chosen only if they are not tied either in
X or in Y and gamma is the difference between the conditional
probabilities of like and unlike orders under that choice rule.

When X and Y are statistically independent, C = D and gamma is 0.
Gamma grows, not with just any departures from independence, but
only with monotonic departures — one way or the other."As the pre-
ponderance of pairs of untied observations tend systematically to be in
the same or in the inverse order on X and Y, gamma departs from 0.

The sign of gamma, plus or minus, indicates whether the dominant
order is the same or the inverse on the two variables. And its magnitude
can be directly interpreted as telling us how much more likely we are to
see same rather than inverse order in untied observations on the two
variables. Thus, a gamma of + 1 indicates that all untied pairs are in the
same order, and - 1, that they are all in inverse order. As a final bonus,
gamma, or rather its numerator, has a known and tractable sampling
distribution.

Gamma is also a PRE measure and is derived by exactly the same
reasoning as we used above in providing a PRE basis for tau:

(C+Dy2-D
(C + D)/2
C-D
T Cc+«D"

But here, ties are not prohibited — they are simply not used in calcula-
tions. So gamma does not require a one-to-one correspondence, or even
a function, to achieve a value of 1. The magnitude of gamma will be 1
whenever the observations can be fit 10 any monotonic relation.

Gamma =
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Gamma is, therefore, a perfectly general and interpretable measure of
ordinal association that can be used whenever the monotonic relation is
an appropriate model for the problem and data at hand.

Some writers have criticized gamma for the ‘‘undesirable property’’
of restricting its calculations only to untied pairs (Loether and
McTavish, 1976). This property, however is neither a flaw nor a weak-
ness. It is an unalterable consequence of gamma’s association model.
Indeed, it might be more appropriate to complain that, in a given
application, the monotonic refation is not the model desired.

With gamma, then, we have our first unrestricted and completely
non-arbitrary measure of ordinal association. [t is based on the model
of a monotonic relation and it is both strictly order-based and a PRE
measure.

The next several measures to be reviewed are all asymmetrical. All,
therefore, are — at least implicitly — aimed at embodying the
monotonic function as their model.

Sommers (1962) explicitly sought to create a measure based on the
notion of monotonicity. He introduced an asymmetric measure, d,,,
but did not specify just how it tied in to the monotone notion. d,, was
defined as an asymmetrical measure where X is the independent and Y
the dependent variable. It is equal to

c _ D ___cC-D
C+D+ Y, C+D+Y, C+D+Yy’

On the face of it, the Sommers measure seems to be the opposite of
the measure we are seeking. The model of a monotonic function
excludes Y, pairs, but Sommers excludes those that are tallied in X,. His
reasoning seems similar to that underlying 7,. The denominator of d,,
is equal to the number of pairs that are not tied in the marginal
distribution of X — the number that might possibly contribute to C or
D. So, from this perspective, d,, is a measure of the degree to which the
predominant mode, same or inverse order, approaches its maximum
value. Or, from the viewpoint of Goodman and Kruskal, it is the dif-
ference between the probabilities of like and unlike orders conditional
on pairs being chosen that are not tied on the independent variabie, X.
But from the perspective of modelling a monotone, the wrong ties are
excluded. As defined, then, d,, does not fit the model of a monotonic
function.

Moreover, we can see that as a consequence of its not being based on
a monotonic model d,, is seriously flawed. Leik and Gove (1969) have
shown that although d,, can be given a PRE interpretation, calculating

ds
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errors depends on an awkward weighting scheme. Half the pairs that
are tied on the dependent variable — Y — but not tied on X, are defined
as errors. Thus, if two observations in X are ordered, a tie between the
corresponding pair in Y is considered to be half as much of anerroras a
clear reversal in order in the Y pair. This kind of arbitrary differential
weighting of various kinds of errors gives the resulting measure a
distinctly ad hoc character. It defeats the whole aim of developing
systematic interpretable measures.

Since Leik and Gove (1969) were troubled by the arbitrary weighting
in the Sommers statistic, they introduced a variant, d’,,. There, errors
generated by Y, were counted in a straightforward way rather than
being weighted by 1/2. This measure was said to be designed as a
‘‘strong monotone’’ version of d,,, but, like d,,, it was also reversed
with respect to fitting a monotonic function. Moreover, as a con-
sequence of their rule for counting errors, Leik and Gove produced a
measure that cannot be interpreted as a difference in the conditional
probabilities of like and inverse orders; theirs is not a strictly ordinal
measure. Thus, d’,, represents an attempt to repair d,, that was
focussed on the wrong problem.

Kim (1971), however, found the right problem. His d,, is an
asymmetrical measure from X to Y. It requires that we choase pairs
conditional on y; not = y;. This eliminates pairs that fall in Y, and Z
from consideration. The initial guessing rule is the same as that
described above. Guess orders in the dependent variable, y; > y; with a
probability of 1/2. Since all y; = y; pairs have been excluded, our
expected error is 1/2 for all the remaining pairs or 172 (C + D + X,).
Thisis E,.

The standard rule is used for guessing orders of pairs of Y observa-
tions, given information on X pairs. If C > Dand x; > x;, guess y; > y;.
Here the pairs that are tied in X are included, so guesses have to be made
for them. But since for these pairs x; = x;, knowledge of the X pair gives
us no new information; we can still do no better than to flip a fair coin
and guess y; > y;ory; < y; with a probability of 1/2. Thus, our second
error index, E; = D + Xy/2. Then

(C + D+ X3)/72 - (D + Xy/2)

dyx = (C + D+ X)/2
C-D
C+D+X’

Thus, d, , is both a PRE measure and is strictly order-based from the
Goodman-Kruskal perspective. It involves no arbitrary weighting, and
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it embodies the monotonic function as its ordinal model. All this means
that the Kim asymmetrical statistic may be used whenever the idea of a
monotonic function is appropriate to the problem at hand. With Kim’s
d,, we have, therefore, our second general and non-arbitrary measure
of ordinal association.

Before leaving this discussion of asymmetrical measures, we must
mention one other case, Leik and Gove’s (1971) index, d,. The creation
of d, was motivated by Costner’s argument that, because C, D and
possibly X, and Y, were used in calculating his first error index, E,,
these models were not strictly PRE. Orders on the predictor variable,
X, seemed to be used in determining orders on the predicted variable,
Y, while in the E, case, guessing is supposed to involve only orderson Y.
Actually, the orders of X are only used for computing errors — they are
not used for making guesses so the apparent problem is not really sub-
stantive. Nonetheless, Leik and Gove set out to create a measure that
eliminated that ‘‘problem.”

The result of this effort is a measure that is certainly PRE and that
seems, at first glance, to resemble a Goodman-Kruskal order-based
measure. The trouble is that it is actually based, not on optirhal orders,
but rather on departures from statistical independence. That being the
case, d; — like rho — can be shown to depart from 0 in cases where
there is no monotounic departure from independence — where C = D.
d,, then is not a strictly order-based statistic. It contains elements that
make it impossible to interpret in the context of ordinal measurement.

We are left at this point still looking for the statistic Kendall sought
— an order-based.measure based on the monotonic one-to-one cos-
respondence model. Kim (1971) proposed a symmetrical version of his
d, , that is a possible candidate. His symmetrical measure, d, is simply
the average of two asymmetrical measures, d, , and d, ,. Thus, it is easy
to show that

d C _ D
C+D+ X/2 + Yy2 C+ D+ Xy/2 + Yo/2
C+D

TC+D+ X2 + Y2

The result is an arbitrary weighting of errors generated by X, and Y,and
a measure that does not capture the monotonic model of interest.
Finally, we turn to a symmetrical measure, e, introduced by Wilson
(1974) and according to Kruskal (1958) also by Deuchler (1914). Like
the others, this measure is based on the order exhibited by pairs of
observations. And like the others, this order is guessed for each pair of



66 LINTON C. FREEMAN

observations for a variable both with and without information about
the other variable. The difference here is that orders are guessed twice:
first for Y and then for X. The orders of Y pairs are guessed both alone
and taking X orders into account, and the orders of X pairs are similarly
guessed both alone and taking Y orders into account.
In guessing Y orders, we choose pairs of observations conditional on
x; not = x;; that is we exclude pairs that are tallied in X, and Z. This is
necessary in order to avoid counting those pairs as errors. We will pick
up the pairs in X; when we guess the orders in X, and we do not want to
count the Z pairs as errors at all. As always, we guess y, < y; with a
probability of one-half. We will make errors in such predictions of Y
for 1/2 of those pairs counted as C and 1/2 of those counted as D. In

addition, all cases where y; = y;, — those tallied in Y, — are errors.
Therefore, for the Y predictions,

E(Y) = (C + D)/2 + Y,.

Exactly the same procedure may be used to guess orders in X without
knowledge of Y. For these X predictions, then,

E(X) = (C + D)/2 + X,,

and the total error in guessing orders on each variable without
knowledge of the other is

E, =~ EXY) + E(X)
=C+D+X, - Y,

In predicting the order in Y conditional on the X order, we must
again exclude those pairs that are tied on X. If C > D, we guess

Yi >yl > x

that is, we guess concordance uniformly for all pairs. Using this rule we
make errors for all pairs that are tallied in D and all those where we
make ordinal predictions but observe ties — those tallied in Y,. Thus,
ExXY) =D + Y,.

Now we guess the order of X based on the Y order by the correspond-
ing rules, and errors occur for pairs tallied in D and those in X,. Error
for this set of predictions, then, is Ey(X) = D + X,, and the total error
in both variables taking the other into account is

E, = 2D + X, + Y,

Therefore, as a general PRE measure,
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E, - E
E,
C+D+Xo+Y)-02D + X, + Yy
- C+D+X+ Y, '
C-D :
TCt+D+X,+ Y,

which is exactly the measure we seek.

Thus e is both a PRE measure and a strictly order-based measure, It
takes as its model the general monotonic one-to-one correspondence. It
is therefore a straightforward generalization of Kendall’s tau. It lacks
the restriction that X, = Y, = Z = Othat characterizes tau, but for data
where that restriction holds tau is equal to e. Wilson’s e statistic may be
used to determine the degree to which a monotonic one-to-one cor-
respondence fits our data whenever we have a bivariate distribution and
our observations are recorded at least at the ardinal level.

This ends our review of standard measures of ordinal association.
We end up with three broadly useful measures, gamma, d,, and e. At
the level of models of association, gamma embodies a monotonic
relation, d, , a monotonic function and ¢ a monotonic one-to-one cor-
respondence. They are a family in the sense that they all exhibit the
same form. Alf, as a matter of fact, have exactly the same numerator.
All therefore are strictly order based; they are differences between
conditional probabilities of like and inverse orders.

These three measures differ only in their denominators, where each
‘‘penalizes’’ the data for tied observations in its own way and consistent
with its own monotone model. And that’s where the conditions on the
probabilities come in. Gamma is conditional on x; not = x;and y;not =
y;- d,, is conditional on y; not = y;. And e is conditional on x; not = x;
when guessing Y and y, not = y, when guessing X.

€ =

SUMMARY AND CONCLUSION

This paper began with a review of an explicit and generally accepted set
of standards for measuring ordinal association. These standards, how-
ever, were shown to contain pockets of ambiguity that could result in
the construction of measures that complied totally with their rules but
that still contained arbitrary and ad hoc elements.

It was argued that what was needed was a standard or standards for
the notion of completely ordered association. And the answer was
sought in the mathematical concept of monotonicity. Three distin-
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guishable kinds of monotones -— a monotonic relation, a monotonic
function and a monotonic one-to-one correspondence were developed.
These three monotones were cast as models of complete association
that could form the bases for three measures of ordinal association.
This paper, then, extended the current standards for measuring ordinal
association in order to eliminate their residual ambiguity.

A review of eleven established measures showed eight that failed to
meet these revised standards and three that succeeded. The successful
measures were Goodman and Kruskal’s (1954) gamma, Kim’s (1971)
d,, and Wilson’s (1974) e. All the others contained ad hoc elements or
other limitations that preclude their use as general ordinal measures.

The result is a family of interpretable monotone based measures.
They are all related — in fact, they differ only in their denominators. It
is always the case that e < d,, < gamma. Any of these statistics may be
used to examine data in applications where its monotonic model is con-
sistent with the substantive hypotheses.

REFERENCES

Costner, H.L. 1965. Criteria for measures of associalion. American Sociological Review
30, 341-353.

Deuchler, G. 1914. Uber die methoden der korrefationsrechnung in der padagogik und
psychologie. Zeitschrift fur Padagogische Psychologie und Experimenielle
Padagogik 18, 114-139, 145-159, 229-242,

Goodman, L.A. and Kruskal W.H. 1954, Measures of association for cross
classifications. Journal of the American Statistical Association 49, 733-764.

~—— Measures of association for cross classifications. {1. Further discussion and
references. Journal of the American Statistical Association 54, 123-163.

Guttman, L. 1941. An outline of the statistical theory of prediction. In P. Horst, ed. The
Prediction of Personal Adjustment. New Y ork: Social Science Research Council.

Kendall, M.G. 1938. A new measure of rank correlation. Biometrika 30, 81-93.

— 1948. Rank Correlation Methods. London: Charles Griffin.

Kim, J.O. 1971. Predictive measures of ordinal association. American Journal of
Sociology 16, 891-907.

Kruskal, W.H. 1958. Ordinal measures of association. Journal of the American
Statistical Association 83, 814-86].

Locther, H.J. and McTavish D.G. 1976. Descriptive and Inferential Statistics: an
Introduction. Boston: Allyn and Bacon.

Leik, R.K. and Gove W.R. 1969. The concept and measurement of asymmelric
monoionic relationships in sociology. American Journal of Sociology 14, 696-709.

-—— 1971, Integrated approach to measuring association. In H.L. Costner, ed.
Sociological Methodology 1971. San Francisco: Jossey-Bass.

Sommers, R.H. 1962. A new asymmetric measure of association for ordinal variables.
American Sociological Review 27, 199-811.

Spearman, C. 1904. The proof and measurement of association between two things.
American Journal of Psychology 15, 72-101.




ORDER-BASED STATISTICS AND MONOTONICITY 69

Stuart, A. 1953. The estimation and comparison of strengths of association in
contingency tables. Biometrika 40, 105-110.

Wilson, T.P. 1974. Measures of association for bivariate ordinal hypotheses. In H.M.
Blalock, ed., Measurement in the Social Sciences. Chicago: Aldine-Atherton.



