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A new measure of centrality, C,, is introduced. It is based on the concept of network flows. While 

conceptually similar to Freeman’s original measure, Ca, the new measure differs from the original 

in two important ways. First, C, is defined for both valued and non-valued graphs. This makes 

C, applicable to a wider variety of network datasets. Second, the computation of C, is not based 

on geodesic paths as is C, but on all the independent paths between all pairs of points in the 

network. 

1. Introduction 

Concern with centrality stems from two quite different structural 
intuitions. First there are those who view a person as central in a social 
network to the extent that he or she is somehow close to everyone else 
in the network (Bavelas 1950; Katz 1953; Shaw 1954; Harary 1959; 
Faucheux and Moscovici 1960; Garrison 1960; Beauchamp 1965; Pitts 
1965; Hubbell 1965; Mackenzie 1966; Sabidussi 1966; Bonacich 1972, 
1987; Coleman 1973; Nieminen 1973, 1974; Moxley and Moxley 1974; 
Rogers 1974; Czepiel 1974; Kajitani and Maruyama 1976; Burt 1982; 
Mizruchi, Mariolis, Schwartz and Mintz 1986; Stephenson and Zelen 
1989; Friedkin 1991). 

This view of centrality is motivated by the idea that a person who is 
close to others will have access to more information (Leavitt 1951; 
Sabidussi 1966; Stephenson and Zelen 1989) have higher status (Katz 
1953; Hubbell 1965), have more power (Coleman 1973; Bonacich 
1987), have greater prestige (Burt 1982) or have greater influence 
(Friedkin 1991) than others. 
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The second intuition grows out of the idea that people are somehow 
central to the degree they stand between others on the paths of 
communication (Bavelas 1948; Shimbel 1953; Shaw 1954; Cohn and 
Marriott 1958; Anthonisse 1971; Freeman 1977; Friedkin 1991). Such 
people can facilitate or inhibit the communication of others and are, 
therefore, in a position to mediate the access of others to information, 
power, prestige or influence. 

The present paper is intended as a contribution to the betweenness- 
based conception of centrality. In particular, we will introduce a new 
measure of centrality C, that is designed to overcome some of the 
limitations of existing measures. In the next section we will begin with 
a review of the earlier betweenness-based measures. 

2. The C, family of betweenness-based measures 

A family consisting of three betweenness-based measures of central- 
ity were introduced by Freeman (1977). These measures are grounded 
in graph theory. 

Consider anordinarygraphG=(P, E). Let P={x,, x,, . ..} bea 
finite non-empty set containing n points, that here represent people. 
Pairs of points are linked by an irreflexive symmetric relation E, that 
defines edges linking pairs of points in S. For present purposes we may 
consider that a pair of points is linked by an edge, (x1, xi) E E, if and 
only if x, and xj interact with each other or are somehow socially 
linked. 

Two points in such a graph are said to be adjacent if they are linked 
by an edge. A walk is an alternating sequence of points and edges 
where each edge is linked to both the preceding and succeeding point. 
A walk begins and ends with a point. 

If every point and edge in a walk is distinct (different) it is a path. 
Points that are linked by a path are said to be reachable. Moreover, a 
path that begins and ends with the same point is called a cycle. Finally, 
the length of a path is the number of edges it contains, and a geodesic 
is any shortest path linking two points. 

The measures of betweenness are based on the assumption that 
information is passed from one person to another only along the 
shortest paths linking them. The betweenness C,( x1) of a point x1, 
therefore, requires an examination of the geodesics linking pairs of 
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other points. If g,k is the number of geodesics linking points xj and xk 
in a graph, and gjk( xi) is the number of such paths that contain point 
xi, then 

b,k(x,) = !!!&A 
I 

is the proportion of geodesics linking xi and xk that contain xi. 
To determine the centrality of point xi, we sum all these values for 

all unordered pairs of points where j < k and i #j # k 

This provides a measure of the overall centrality of point x, in the 
graph. 

This measure may be normalized by dividing cB( xi) by its maximum 
possible value. Freeman (1977) proved that, for any graph containing n 
points, that maximum is 

n2 -3n+2 
2 . 

Therefore, 

cL(x;) = 2cd4 
n2 -3n+2 (4 

is a normalized measure that varies between 0 and 1. 
An overall index of the centralization of a graph C, was also 

defined. It is based on the intuition that a graph is centralized to the 
degree that is communication flow is overwhelmingly dominated by a 
single point. The measure was defined as the average difference be- 
tween the normalized centrality of the most central point CL< p* ) and 
the normalized centralities of all other points in the graph: 

2 E(P*> - GXPAI 
c,= i=l 

n-1 (3) 
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These three measures have been used in a number of applications 
(see, in particular, Pitts 1979 and Hage and Harary 1981; Knoke and 
Burt 1983; Bolland 1988). But, from the beginning, it was apparent that 
they contained two unfortunate restrictions. In the first place, these 
measures are defined only for simple graphs. While conceptually 
elegant, as representations of human relationships, such binary struc- 
tures leave something to be desired. As Peay (1976, p. 56) put it, binary 
modeling flies in the face of common sense in that: 

. . . it encompasses only qualitative relationships. This precludes the 
possibility of considering such variables as strength of relationship 
[or] amount of social interaction . . . 

Peay’s view is widely held. Since the 1940s structural analysts have 
questioned the binary approach (Festinger 1949; Levi-Strauss 1963; 
Hubbell 1965; Doreian 1969; Lorrain and White 1971; Alba 1973; 
Peay 1974, 1980; Seidman and Foster 1978; Yee 1980; Marsden and 
Laumann 1984; Yan 1988). The consensus is that binary representa- 
tions fail to capture any of the important variability in strength 
displayed in actual interpersonal relationships. 

There measures are also restricted, and potentially misleading, as a 
consequence of their exclusive focus on geodesic paths. As Stephenson 
and Zelen (1989) suggested, there is no reason to believe that communi- 
cation between a pair of persons takes place only on the shortest paths 
linking them. As they put it: 

It is quite possible that information will take a more circuitous route 
either by random communication or may be intentionally channeled 
through many intermediaries . . . 

These measures, then, are probably unrealistic in their characterization 
of human communication. In the next section we will introduce a less 
restricted alternative to C,, based on Ford and Fulkerson’s (1956, 
1957, 1962) model of network flows. 

3. Valued graphs, network flow and betweenness 

A valued graph begins with the ordinary graph G = (P, E) defined 
above. A numeric value is associated with each edge in E by defining a 
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function, or mapping, C from the Cartesian product S X S to some 
subset of the non-negative integers. 

This function can be used to represent a measure of social proximity 
between pairs of persons. Its values indicate the strength of the social 
linkage connecting each pair of individuals in S. For any pair of 
individuals i and j, the magnitude of cii may reflect their amount of 
interaction, the time they spend in one another’s company, the range of 
different social settings in which they interact or any other reasonable 
index of the strength of the social linkage between them. 

This proximity function C is governed by two rules: 

(2) c,, = C/I. 

Thus, a pair of points have a proximity of 0 if and only if they are not 
connected by an edge in E. And, since we are dealing somehow with 
interaction the proximity of a point xi with another xi is always equal 
to the proximity of x, to xi. A valued graph based on hypothetical 
social proximities is shown in Figure 1. 

If we think of the edges of the graph as channels of communication 
linking pairs of people, then the value of the connection linking two 
people determines the capacity of the channel linking them, or the 
maximum amount of information that can be passed between them. A 
pair of individuals who are socially close are connected by a channel of 

Fig. 1. A valued graph. 
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large capacity. Pairs who are less close are connected by channels of 
lower capacity - “ narrower” channels. And a pair with no social 
connection have no channel through which to pass information. 

Information is assumed to flow along these channels. If f,, is the 
amount of information passing on a channel linking x, directly to x,, 
then 

and the amount of information flowing along a channel that directly 
links adjacent points cannot exceed the capacity of that channel. And, 
of course, if x and y are not adjacent, then the capacity of the channel 
linking them directly is zero, and there can be no direct flow from one 
to the other. 

We are concerned here, not with direct flow between adjacent points, 
but with the overall flow between pairs of points along all the paths 
that connect them. If we choose some point xi as an information 
source, or transmitter, and another point x, as an information sink, or 
receiver, information from X, may reach xJ by flowing along an edge 
linking x, directly to x, and along any and all indirect paths that begin 
at x,, pass through one or more intermediate points, and end at x,. 

Thus, as it is conceived here, the flow between two points is a global 
phenomenon; it depends, not just on the capacity of the channel 
linking the points directly, but on the capacities of all the channels on 
all the paths - both direct and indirect - that connect the two. 

Ford and Fulkerson (1956, 1957, 1962) introduced a model designed 
specifically to assess this kind of network flow. Their model defines a 
flow from a source x, to a sink x,. Flow is constrained only by the 
channel capacities and by two additional conditions: (1) the flow out of 
x, must be equal the flow into x,, and (2) the flow out of each 
intermediate point on any indirect path connecting x, to x, must be 
equal to the flow into that point. 

Given these conditions, Ford and Fulkerson provide a way to 
determine the maximum possible flow from any source x, to any sink 
x,. To do so we need to find the i-j cut sets. An i-j cut set E,, is a 
subset of edges in E such that every path from x, to xj contains an 
edge in El,. It is called an i-j cut set because if the edges in E,, were 
“Cut,” or removed from the graph, x, would no longer be reachable 
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Fig. 2. Maximum flow from a to c in the graph of Fig. 1 

from x,. Any set of edges in E that meet this condition is an i-j cut 
set. 

In Figure 1, for example, the set of all edges, if removed, would 
make communication between point a and point c impossible; they are 
an u-c cut set. But so are the three edges (a, b), (a, d) and (a, c), as 
well as the three (d, c), (b, c) and (a, c). Any collection of edges that 
cut a off from c are an u-c cut set. 

The capacity of a cut set is the sum of the capacities of the individual 
edges making up the set. Thus, the capacity of the cut set consisting of 
all the edges in Figure 1 is 13, and the capacity of the (a, b), (a, d), 
(a, c) cut set is 6. 

The minimum cut capacity from xi to xi is the smallest capacity of 
any of the i-j cut sets. It is apparent that no flow from xi to x, can be 
greater than the minimum cut capacity from x, to xi. And Ford and 
Fulkerson (1962) in their famous min-cut, mux-flow theorem, proved 
that the maximum flow from xi to xi is exactly equal to that minimum 
cut capacity. The maximum flow from point a to point c in the graph 
of Figure 1 is shown in Figure 2. 

Several algorithms for calculating the maximum flow between two 
points in a valued graph exist (Ford and Fulkerson 1957; Dinic 1970; 
Karzanov 1974). This ability to determine maximum flows suggests a 
natural extension of the measure of centrality discussed above. 

In extending the betweenness model to valued graphs a point xi will 
be seen as standing between other points to the degree that the 
maximum flow between those points depends on x,. Let mjk be the 
maximum flow from a point xi to another xk. And let mjk(xI) be the 
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maximum flow from x, to xk that passes through point x,. Then the 
degree to which the maximum flow between all unordered pairs of 
points depends on x,, where j<k and i#j#k is 

G(x,> = t t m.;kbJ. 
l<k 

(1’) 

If we divide the flow that passes through x, by the total flow 
between all pairs of points where x, is neither a source nor a sink, we 
can determine the proportion of the flow that depends on x, 

kfm,k(X,) 

G(A) = “‘,” n 

cc mJk . 
.i<k 

(2’) 

This produces a measure that varies between 0 and 1. 
We can also determine the centralization of the valued graph exactly 

as it was done in the unvalued case. If Cb( p * ) is the normalized 
centrality of the most central point, then 

i [G(P*> - G(PJl 
c,= r=l 

n-l (3’) 

is the average difference between the centrality of the most central 
point and that of all other points. 

To illustrate, let us consider the flows through point b in Figure 1. 
The maximum flow from a to c is already shown in Figure 2. It is 6 
units. To achieve this maximum, 3 units must flow through b. The flow 
from a to d is, by the same reasoning, 4 units. Two units flow directly 
on the (a, d) link. One unit may flow from a to c to d, but in order to 
get the maximum, at least 1 unit must pass through b. Two units pass 
from a to e, but b is not required for their flow. Four units flow from 
c to d, and again, b is required to pass at least 1 unit. Point b, 
however, is not involved in the 2 units that flow from c to e, nor in the 
2 units that flow from A to e. 
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Table 1 

Centralities of points in the graph of Fig. 1 

Point Max flow between 

all other points 
CAP,) G(P,) 

a 20 7 0.35 

b 20 5 0.25 

fi 20 24 13 6 0.65 0.25 

e 30 0 0.00 

Thus, the total maximum flow between all pairs of points (where b is 
neither a source nor a sink) is 6 + 4 + 2 + 4 + 2 + 2 = 20 units. Of 
these, 3 + 1 + 0 + 1 + 0 + 0 = 5 must pass through b and C,(b) = 5. 
Point b, then is necessary for the flow of 5/20 = 0.25 of the flow 
among pairs of other points and Ci( b) = 0.25. 

If we use this same procedure to calculate the flows through all 
points in the graph of Figure 1, we can determine both C,( p,) and 
Cf( pi) for every point in the graph. This produces the flow-based 
centralities shown in Table 1. 

Thus, c is the most central point. The average difference between the 
relative centrality of c and that of the other points is C, = 0.43 which 
provides the required index of the centralization of the valued graph of 
Figure 1. 

4. Relating C, to C, 

The flow-based measures of centrality can be applied to ordinary 
non-valued graphs by assigning all edges the uniform value of 1. The 
C, measures will not yield the same results as the C, indices except in 
the special case where set of paths linking each pair of points is equal 
to the set of geodesic linking those points. 

Consider, for example, an ordinary graph without cycles. Whenever 
a graph contains no cycles, every pair of points in that graph is either 
(1) reachable by a single path, or (2) unreachable. When a single path 
links a pair of points then that path is necessarily a geodesic. C,( x,) in 
that case is simply a count of the number of geodesics linking all pairs 
of points that contain xi. And CL(x,) is the proportion of geodesics 
that contain xi_ 
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Fig. 3. A five point star graph 

Now let that ordinary acyclic graph be a valued graph with the 
values of all edges set uniformly to 1. When the capacities of all 
channels in a an acyclic valued graph are uniformly set at 1, the 
maximum flow between any reachable pair of points must be exactly 1. 
The maximum flow, therefore, is equal to the number of geodesics in 
the graph, and C,(x,) = cr(xi) and CL(x,) = CA(x,). 

Consider, for example, the star of Figure 3. The flow-based centrali- 
ties for the star are shown in Table 2. These centralities are the same as 
those calculated from the betweenness-based measures (Freeman 1977). 

In general, the C, measures will be equal to the C, measures only 
for graphs where the number of edge-independent paths linking any 
two points is equal to the number of geodesics. Such graphs cannot 
contain cycles since any adjacent points in a cycle will be linked by two 
edge-independent paths but only one geodesic. Connected graphs 
without cycles (i.e., trees) have only one path - a single geodesic - 
linking any pair of points. When there are no alternate paths, the 

Table 2 
Centralities of points in the star of Fig. 3 

Point 

(I 

h 

zi 

r 

Max flow between 

all other points 

6 

6 

6 6 

6 

CAP,) 

6 

0 

0 0 

0 

CA PI) 

1.00 

0.00 

0.00 0.00 

0.00 
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counts tabulated by the betweenness measures must equal the flows of 
the flow-based measures. 

When cycles are present, however, C, and C, will differ. That is 
because the C, measures record flow only along geodesics, while the 
C, measures are responsive to all (edge-independent) paths along 
which information can flow. Therefore, the two kinds of measures will 
produce different results for any graph that contains any cycles. 

5. Summary and conclusions 

In summary, this paper has introduced three new flow-based mea- 
sures of centrality. These new measures differ from the earlier C, 
family of measures in two important ways. 

First, the C, measures restrict the analysis of centrality to data on 
interpersonal linkages that can be represented in binary terms. In 
contrast, the measures introduced here permit the use of valued data 
that record the strengths of people’s social connections. The new 
measures, then, are responsive to subtle differences in the strengths of 
the relationships linking various pairs of individuals. 

Second, the C, measures focused exclusively on the shortest paths, 
or geodesics, linking pairs of individuals. Instead, the measure intro- 
duced here determine flows on the basis of all the independent paths in 
the network. Since there is no reason to believe that people restrict their 
communication to the shortest paths in their networks, the new mea- 
sures are probably more realistic in depicting network structure. 

While the new flow-based measures may be used with binary data, 
they will generally produce somewhat different results than those 
yielded by the older binary measures. The two kinds of measures will 
produce the same results when they are both applied to graphs without 
cycles. But when cycles are present, the flow-based measures will 
determine betweenness in terms of all the paths connecting pairs of 
points, while the earlier binary measures will arrive at an index based 
only on the geodesic paths. Users will have to decide which kind of 
model is appropriate in each particular application. 
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