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In a recent book | reviewed the development ofaawetwork analysis
from its earliest beginnings until the late 199Bseéman, 2004). There |
characterized social network analysis as an appriet involves four
defining properties: (1) It involves the intuititimat links among social actors
are important. (2) It is based on the collectiod analysis of data that record
social relations that link actors. (3) It drawstié on graphic imagery to
reveal and display the patterning of those linkad (4) it develops
mathematical and computational models to descnldesaplain those
patterns.

In that book | reviewed both the history and thehpstory of social
network analysis. | showed that as early as timeeé&nth century, and
probably even eatrlier, people began to produce wWwakdrew on one or more
of the four properties listed above. Until the @93however, no one had used
all four properties at the same time. The modiid bf social network
analysis, then, emerged in the 1930s.

In its first incarnation, modern social network s& was introduced
by a psychiatrist, Jacob L. Moreno, and a psychsipgelen Jennings
(Freeman, 2004, Chapter 3). They conducted elsbogaearch, first among
the inmates of a prison (Moreno,1932) and laterragrtbe residents in a
reform school for girls (Moreno, 1934).

Moreno and Jennings named their appraaciometry. At first,
sociometry generated a great deal of interesticodatly among American
psychologists and sociologists. But that intetested out to be short lived;
by the 1940s most American social scientists hadmed to their traditional
focus on the characteristics of individuals.



During the same period another group, led by ahrapblogist, W.
Lloyd Warner, also adopted the social networks aaghn (Freeman, 2004,
Chapter 4). Their efforts were centered in thenfmpology Department and
the Business School at Harvard, and their appraashpretty clearly
independent of Moreno and Jennings work. Warnsigded the “bank
wiring room” study, a social network componentlod famous Western
Electric research on industrial productivity (Rdestierger and Dixon, 1939).
And he involved business school colleagues ande@mbogy students in his
community research. They conducted social netweskarch in two
communities, Yankee City (Warner and Lunt, 1941 Breep South (Davis,
Gardner and Gardner, 1941).

The Warner people never stirred up as much intexedtd Moreno and
Jennings. And when Warner moved to the Univedit@¢hicago in 1935 and
turned to other kinds of research the whole Harvaogdement fell apart.

The third version of social network analysis emdrgaen a German
psychologist, Kurt Lewin, took a job at the Univigrof lowa in 1936
(Freeman, 2004, pp. 66-75). There, Lewin workeith &ilarge number of
graduate students and post-docs. Together, thesjapeed a structural
perspective and conducted social network researttteifield of social
psychology (e. g. Lewin and Lippit, 1938).

The Lewin group moved to the Massachusetts Instiffechnology
in 1945, but after Lewin's sudden death in 194 7strobthe group moved
again, this time to the University of Michigan. i§Michigan group made
Important contributions to social network resedaimore than twenty years
(e. g. Festinger and Schachter, 1950; Cartwrigtitarary, 1956; Newcomb,
1961).

One of Lewin's students, Alex Bavelas, remaindd|at where he
spearheaded a famous study of the impact of griouptsre on productivity
and morale (Leavitt, 1951). This work was influehin the field of
organizational behavior, but most of its influeneas limited to that field.

All three of these teams began work in the 1930sne of them,
however, produced an approach that was acceptedsaalt the social
sciences in all countries; none provided a stanfitarstructural research.



Instead, after the 1930s and until the 1970s, nousecenters of social

network research appeared. Each involved a diffédogm and a different
application of the social network approach. Momothey worked in

different social science fields and in differentintries. Table 1 lists thirteen

centers that emerged during those thirty yéars.

Place Field Team Leaders Country
Michigan State =~ Rural sociology Charles P. Loomis [ USA

Leo Katz
Sorbonne Linguistics Claude Lévi-Strauss France

André Weil
Lund Geography Thorsten Hagerstrand  Sweden
Chicago Mathematical Biology Nicolas Rashevsky USA
Columbia Sociology Paul Lazersfeld USA

Robert Merton
lowa State Communication Everett Rogers USA
Manchester Sociology Max Gluckman Great Britain
MIT Political Science Ithiel de Sola Pool USA

Manfred Kochen
Syracuse Community Power Linton C. Freeman USA

Morris H. Sunshine
Sorbonne Psychology Claude Flament France
Michigan Sociology Edward Laumann USA
Chicago Sociology Peter Blau USA

James A. Davis
Amsterdam Sociology Robert Mokken Netherlands

Table 1. Centers of Social Network Research from #9 to 1969

By 1970, then, sixteen centers of social netwoskeaech had appeared.
With the development of each, knowledge and acoeptaf the structural
approach grew. Still, however, none of these cergaecceeded in providing a
generally recognized paradigm for the social netvamproach to social
science research.

! Important publications from each of these cendeeslisted in Freeman (2004).



That all changed in the early 1970s when Harrisow@ite, together
with his students at Harvard, built a seventeeatitar of social network
research. In my book | described the impact &f ¢gmoup (Freeman, 2004, p.
127):

From the beginning, White saw the broad generality of the
structural paradigm, and he managed to communicate both that
insight and his own enthusiasm to a whole generation of out-
standing students. Certainly the majority of the published work
in the field has been produced by White and his former students
Once this generation started to produce, they published

so much important theory and research focused on social net-
works that social scientists everywhere, regardless of their field,
could no longer ignore the idea. By the end of the 1970s, then,
social network analysis came to be universally recognized
among social scientists.

Following the contributions of White and his stutégisocial network analysis
settled down, embraced a standard paradigm andneewalely recognized
as a field of research.

In the late 1990s, however, there was a revolatypohange in the
field. It was then that physicists began publighim social networks.First,
Duncan Watts and Stevan H. Strogatz (1998) wrobeitedmall worlds. And
a year later Albert-Laslo Barabasi and Réka AlGE9D9) examined the
distribution of degree centralities. | ended thdier account in my book by
commenting on the entry of Watts, Strogatz, Baradwdd Albert into social
network research. | expressed the pious hopeltkagll the earlier potential
claimants to the field, our colleagues from physvesild simply join in the
collective enterprise.

That hope, however, was not immediately realiZEdese physicists,
new to social network analysis, did not read derditure; they acted as if our
sixty years of effort amounted to nothing. In eamt article, | contrasted the
approach of these new physicists with that of eaghysicists who had been
involved in social network research (Freeman, 2008)

Other physicists had already been involved in social network
analysis. Notable among these were Derek de Solla Price,
Harrison White and Peter Killworth (e. g. Price, 1965, 1976; White,

2 Scaott, in the current volume, also describes ttigyef physicists into social network analysisisH

description centers on their theoretical perspectiv



1970; White, Boorman and Breiger, 1976; Killworth, McCarty,
Bernard, Johnsen, Domini and Shelley, 2003; Killworth, McCarty,
Bernard and House, 2006). These physicists read the social
network literature, joined the collective effort and contributed to an
ongoing research process.

But neither Watts and Strogatz nor Barabasi an@r\khd any of these
things. They simply took research topics that &ladhys been part of social
network analysis and claimed them as topics in ipBys

The result was a good deal of irritation (and ppsha certain amount of
jealousy) on the part of many members of the so@alork research
community. Bonacich (2004) put it this way:

Duncan Watts and Albert-Lasl6 Barabasi are both physicists who
have recently crashed the world of social networks, arousing some
resentment in the process. Both have made a splash in the wider
scientific community, as attested by their publications in high status
science journals (Science, Nature). . . . Both have recently written
scientific best-sellers: Six Degrees ranks 2547 on the Amazon list,
while Linked ranks 4003.

Watts, Strogatz, Barabasi and Albert opened the. dbbey managed
to get a huge number of their physics colleaguesiwed—enough to
completely overwhelm the traditional social netwarlalysts. Their impact,
then, was to produce a revolution in social netwedearch. In the present
essay | will focus on that revolution and its aftath. Here | will review the
developments that have occurred since those twadessrivere published.

The Origins of the Revolution

The article by Watts and Strogatz (1998), addreassdndard topic in
social network analysis, the “small world.” Concevith that issue stemmed
from one of the classic social network papers, ‘1@ots and influence,”
written by Ithiel de Sola Pool and Manfred Kocherthe mid-1950s. It
circulated in typescript until 1978 when it wasdiily published as the lead
article in Volume 1, Number 1 of the new jourrfad¢cial Networks.

The questions raised by Pool and Kochen concerattéerps of
acquaintanceship linking pairs of persons. Thecsfated that any two



people in the United States are linked by a chbactquaintanceships
involving no more than seven intermediaries.

Various students picked up on Pool and Kochen’asdmcluding
Stanley Milgram who used them as the basis fodbetoral dissertation on
the “small world.” Milgram published several papen the subject, one of
which one was a popularization that appeardesychology Today (1967).

Watts and Strogatz cited tRsychology Today article as well as a later
book edited by Kochen (1989) on the small worldaideBut they apparently
did not discover any of the other literature ongbbject. In any case, they
introduced an entirely new model that was desigoextcount for both the
clustering found in human interaction and the spaths linking pairs of
individuals.

The Watts and Strogatz model begins with an atteonpapture
clustering—the universal tendency of friends céifids to be friends. They
represent links among individuals as a circuldrdatlike the one shown in
Figure 1, where each node is an individual and edge is a social link
connecting two individuals. They go on to defimeagerage clustering
coefficient C(p) that measures the degree to which each nodesand it
immediate neighbors are all directly linked to @m®ther. The structure in
Figure 1 embodies a good deal of clustering—neighbbneighbors are, for
the most part, neighbors—thus the clustering caefit C(p) is high. But, at
the same timd, (p), the average length of the path linking any twadividuals
in the whole lattice, is relatively large.

Place Figure 1 about here

SincelL (p) is large, the world represented by this circuddtide is
certainly not small. But Watts and Strogatz shotired they could produce a
small world effect—where no individual is very faom any other
individual—simply by removing just a few of the s between close
neighbors and substituting links to randomly seldathers. As Figure 2
shows, under those conditions some links span al@asss the lattice. The
result is, that as random links are substitutedihés to close neighbors, path
lengthL(p) drops abruptly, but the clustering coeffici€ifp) is hardly
diminished at all. Thus, for the most part, frisrad friends are still friends,
but the total world has become dramatically smaller



Place Figure 2 about here

The article by Barabasi and Albert (1999) also taplka standard
network analytic topic, degree distribution. Thegycke of a node is simply
the number of other nodes to which it is directiyeected by edges. Much of
the earliest research on social networks was facasehe distributions of
degrees. Research in sociometry often involvethggkeople whom they
would choose, say, to invite to a party or to wearth on a project (Moreno,
1934). As soon as the responses to such quesisgas to be tallied, it
became apparent that the distribution of being @hegas dramatically
skewed. A few individuals were chosen extremetgroivhile a large number
were chosen rarely, if at all.

Moreno and Jennings (1938) reported two empirestilts: (1) such
skewed distributions were universally observed, @dhey departed from
expectations based on random choices. As theyidedat, “A distortion of
choice distribution in favor of the more choseragainst the less chosen is
characteristic of all groupings which have beenauetrically tested.”

Barabéasi and Albert (1999) studied the distributbconnections in
networks that grew as a consequence of adding neesn Their examples
included links between sites in the World Wide Weaiks between screen
actors who worked together on films and links betmvgenerators,
transformers and substations in the U. S. eletipoaer grid. Although
Barabasi and Albert were apparently unaware oétrger findings of
Moreno and Jennings, they discovered that the atioms in the networks
they examined were not random. Instead, the ivik® skewed; just as
Moreno and Jennings had reported, Barabasi andtAthend a few nodes
that displayed too many connections and a greay mades that displayed
too few.

Barabasi and Albert went on to propose a simpldehdesigned to
account for the pattern of skewness they had obderZonsider a collection
of existing nodes. Ld¢ be the number of links already established to mode
Then let the probability that a new node is gomgrik to any node, depend
onk;. The model specifies the probability of that lzdnnecting to nodeas



P(k;) = ki’ where 2<y < 32 The distribution of connections, then, follows a
power law, or as Barabasi and Albert charactetjaeis “scale free.”

The Growth of the Revolution

As a consequence of the interest generated by WadtStrogatz and
by Barabasi and Albert, the revolution began imest. As Figure 3 shows,
physicists followed up on the Watts and Strogatalsworld paper. Within
five years, the physics community had produced reorall world papers than
the social network community had turned out inyfdive years (Freeman,
2004, pp. 164-166).

Moreover, Figure 3 also shows that, at that p@8% of the citations
were made within either the physics community ergbcial network
community. For the most part, physicists ignotezlgarlier work by social
network analysts. And social network analystseagied in kind.

Place Figure 3 about here

Physicists were also quick to follow up on Baralzdel Albert’s work
on degree distributions. According to Google Sahdieir first paper had
received over 4000 citations as of mid-November820But practically none
of those citations was produced by a social netvaoiyst.

It soon became evident that the physicists’ intdaresocial networks
was not going to be confined to small world phenoanand degree
distributions. Members of the physics communiticily began to explore
other problems that had traditionally belongedacdia network analysts. Nor
was that interest restricted to physicists. Atdhme time, physicists
succeeded in getting biologists and computer gsisritivolved their efforts.
Two main foci of this new thrust involved the stunfycohesive groups or
what physicists callommunities and the study of the positions that nodes
occupy in a network—particularly their centralitywill review these foci in
the next two sections.

3 The Barabasi and Albert model, however, turnsolie essentially the same as that proposed by a

social network analyst, Derek de Solla Price, ifi6l9



Cohesive Groups or Communities

The notion of cohesive group is foundational inislogy. Early
sociologists (Tonnies, 1855/1936; Maine, 1861/1¥31rkheim, 1893/1964;
Spencer, 1897; Cooley, 1909/1962) talked abol# kise. Their work
provided an intuitive “feel” for groups, but it ditbt define groups in any
systematic way.

When the social network perspective emerged, honvaeévork
analysts set out to specify groups in structumr@hse Freeman and Webster
(1994) described the observation behind this siratperspective on groups:

.. . whenever human association is examined, we see what can
be described as thick spots—relatively unchanging clusters or
collections of individuals who are linked by frequent interaction
and often by sentimental ties. These are surrounded by thin
areas-where interaction does occur, but tends to be less frequent
and to involve very little if any sentiment.

Thus, the social ties within a cohesive group teifid to be dense;
most individuals in the group will be linked to eegt many other group
members. Moreover, those in-group ties will temdisplay clustering—
where, as described above, friends of friendsraads. In contrast,
relatively few social ties will link members of tBfent groups, and clustering
will be relatively rare.

An early social network analyst, George Homans (195 84) spelled
out the intuitive basis for the social network cepion of cohesive groups:

... agroup is defined by the interactions of its members. If we
say that individuals A, B, C, D, E . . . form a group, this will
mean that at least the following circumstances hold. Within a
given period of time, A interacts more often with B, C, D, E, . . .
than he does with M, N, L, O, P, . .. whom we choose to
consider outsiders or members of other groups. B also
interacts more often with A, C, D, E, . . . than he does with
outsiders, and so on for the other members of the group. It is
possible just by counting interactions to map out a group
guantitatively distinct from others.

Over the years, network analysts have proposedchdazanodels of



cohesive groups. These models serve to definggnoustructural terms and
provide procedures to find groups in network dathey all try to capture
something close to Homans' intuition in one wayaonother. Some of them
represent groups in terms of on/off or binary liaksong actors (e. g. Luce
and Perry, 1949; Mokken, 1979). Others represehtin terms of
guantitative links that index the strength of fr@gng pairs of actors (e. g.
Sailer and Gaulin, 1984; Freeman, 1992).

Currently, then, we have a huge number of modet®bésive groups.
Most of them were reviewed by Wasserman and FA@94). Some were
algebraic (e. g. Breiger, 1974; Freeman and Wh63), some were graph
theoretic (e. g. Alba, 1973; Moody and White, 2Q0@®me were built on
probability theory (e. g. Frank, 1995; Skvoritz dfalist, 1999) and some
were based on matrix permutation (Beum and Brunde@fs0; Seary and
Richards, 2003). All, however, were designed tecdp the properties of
groups in exact terms, to uncover group structurgetwork data, or both.

Over the years social network analysts have algamion various
computational algorithms in an attempt to uncoveugs. These include
multidimensional scaling (Freeman, Romney and Feagrh987; Arabie and
Carroll, 1989), various versions of singular vaieeomposition, including
principal components analysis and correspondenalgsas (Levine, 1972;
Roberts, 2000), hierarchical clustering (BreigevpBnan and Arabie, 1975;
Wasserman and Faust, 1994, pp. 382-383), the ntaxioeflow algorithm
(Zachary, 1977, Blythe, 2006), simulated annealBmyd, 1991, p.223;
Dekker, 2001) and the genetic algorithm (Freem8831Borgatti and
Everett, 1997).

In social network research, the general tendeney the years has been
to move from binary representations to represeriatin which the links
between nodes take numeric values that represestribngths of
connections. At the same time social network astsligave gradually shifted
from building algebraic and graph theoretic modeldeveloping models
grounded in probability theory. And, as time hassed, they have relied
more often on the use of computational proceduremtover groups.

A notable exception to this trend can be foundharecent article by



Moody and White (2003). There, they used grapbrihto definestructural
cohesion. They defined structural cohesion “. . . as theimum number of
actors who, if removed from a group, would discartrtiee group.” Then they
went on to defin@mbeddedness in terms of a hierarchical nesting of cohesive
structures. This approach represents a new ariistiocpted version of the
traditional social network model building.

Since the early 1970s, mathematicians and compatentists had also
been interested in groups or communities. Thewddfthat interest in terms
of graph partitioning (Fiedler, 1973, 1975; Parlett, 1980; Fiduccia and
Mattheyses, 1982, Glover, 1989, 1990; Pothen, SiamohLiou, 1990).

Social network analysts recognized this traditidrewthe work by Glover
was cited and integrated into the program UCINE®r{fatti, Everett and
Freeman, 1992). And in 1993 the link in the ofthezction was made when a
team composed of an electrical engineer and a cmmpnogineer, Wu and
Leahy, cited the work of the statistician-sociaweek analyst, Hubert (1974).
And in 2000 three computer scientists, Flake, Laaeeand Giles cited the
social network text by Scott (1992).

Until quite recently, however, these efforts did siir up much interest
in the physics community. Instead, the physidistsed to the procedures
developed in social network analysis. Michellev@ir and Mark Newman
(2002), adapted the social network model of betwess centrality (Freeman,
1977) to the task of uncovering groups. Their galagn was based on the
betweenness of graph edges, rather than nodethanelsult was a new
algorithm for partitioning graphs.

Edge betweenness refers to the degree to whicgmie the graph
falls along a shortest path linking every pair ofles. A path in a graphis a
sequence of nodes and edges beginning and endimngedes. Girvan and
Newman reasoned that since there should be rdiafers edges linking
individuals in different groups, those linking edgould display a high
degree of betweenness. So they began by remowenggdidpe with the highest
betweenness, and continued that process untilréEhgvas partitioned.

Two years later Newman and Girvan (2004) publishéallow-up
article. Their second paper again focused on eslgeval, but this time they



introduced an alternative model that had two intaiftoundations. In one,
they showed that random walks between all pairsodes would determine
the betweenness of edges—not just along shortést-pdout along all the
paths linking pairs of nodes. The other intuitwoas motivated by a physical
model where edges were defined as resistors thpegtded the flow of current
between nodes. The edge with the lowest curremt Was removed. If that
did not yield a partition the process was continuetl partitioning did take
place. These two models produced the same pa#sitio

Newman and Girvan went on to show that all of thégorithms always
partitioned the data even though some of the pmariitgs might not reflect the
presence of actual communities. So they introdaceeasure called
modularity. Modularity is based on the ratio of within paain ties to those
that cross partition boundaries and compares #tiat to its expected value
when ties are produced at random. Thus, it prevadeindex of the degree to
which each partition embodies a group- or commulikiy form.

The result of the two papers by Girvan and Newmas dramatic.
Both physicists and computer scientists quicklyaleped an interest in
groups or communities. Radicchi, Castellano, Ceicdmreto and Parisi
(2004) specified two kinds of communities. One wiagracterized as
“strong”; it defined a partition as a communitytifet the condition that
every node had more within-group ties than crossaguones. The other
they characterized as “weak”. It proposed thatrioon was a community if
the total number of ties within each partition wasater than the total number
of ties linking nodes in the partition to nodessude the partition.

Radicci et al. also pointed out that the Girvan Biegvman
betweenness-based algorithm was computationaly. sBb they introduced a
new, more efficient, measure. They reasoned thgesthat bridge between
communities are likely to be involved in very fevccles (where friends of
friends are friends). So they based their measnithe number of 3-cycles in
which each edge is involved, and they showed tiet measure had
moderate negative correlation with the Girvan-Newmeasure. The
number of 3-cycles in which an edge is involveénthturns out to be
inversely related to the betweenness of that edge.

4 They did not cite the similar social network misdatroduced by Sailer and Gaulin (1984).



Newman (2004) quickly jumped back in. He, too, wasbled by the
slowness of the Girvan-Newman algorithm for findoggnmunities. So he
proposed a fast “greedy” algorithm. A greedy allipon makes the optimal
choice at each step in a process, without regattietéong-term consequences
of that choice. In this case, Newman proposed starting a prdmgessiving
each cluster contain a single node. Then, at stagfe in the process, the pair
of clusters that yields the highest modularity isrged.

The concern with computing speed seems to haviedtarace to see
who could develop the fastest algorithm to clustedes in terms of their
modularity. A computer scientist, Clauset, workimigh two physicists,
Newman and Moor (2004) were able to speed up Nevatigreedy”
algorithm. Two more computer scientists, Duch Anehas (2005), devised
an algorithm to speed it up even more. And in 208@@&/man showed how to
gain still more speed by applying singular valueaeposition to the
modularity matrix. Then, in 2007, a computer sasnDjidjev, developed a
still faster algorithm for constructing partitiohased on modularities.

Continuing the search for speed, two other commdientists, Pons
and Latapy (2006) took an entirely different appgtoaThey reasoned that
since communities are clusters of densely linkedkesdhat are only sparsely
linked together, a short (2 or 3 step) random vgalkuld typically stay within
the community in which it is started. They prombs@ algorithm that began
with a series of randomly selected starter nodésen each starter is used to
generate a random walk. Then the starter, alotigtive nodes that are
reached, are tallied as linked. The likelihoothet once these results are
cumulated, they will display the clustered commiesit And finally, two
industrial engineers and a physicist, Raghavarer\dbind Kumara (2007)
produced a very fast algorithm based on graph imgorNodes begin with
unique colors, then, iteratively, acquire the calbthe majority of their
immediate neighbors.

Other, quite different, procedures were also inicsdl. A physicist and a
computer scientist, Wu and Huberman (2004), dexel@model based on
assuming edges are resistors, as was the caseaarier model introduced
by Newman and Girvan. But Wu and Haberman’s madek out to be much

° Hierarchical clustering is an example of a greaidprithm.



more complicated anad hoc. Four physicists, Capocci, Servedio, Caldarelli
and Colaiori (2004) suggested using singular vdkmomposition to uncover
communities. And three others, Fortunato, Latod Marchiori (2004)
proposed a variation of edge centrality, calleddimation centrality.” Their
centrality is based on the inverse of the shopa#t length connecting each
pair of nodes. Physicists Palla, Derényi, Farkak\dcsek (2005) defined
communities as cliques and focused on patternirgyjepie overlap.

Reichardt and Bornholdt (2006) used simulated dmweto search for
partitions that yield communities that have a langenber of ties within
groups and a small number of ties that cut acrosspg.

Some of these ideas, like overlapping cliques andlated annealing,
will be familiar to seasoned social network anayd¥lany others, however,
are new and several are quite creative. In paaticedge betweenness,
modularity, the use of 3-cycles, short random walkd graph coloring appear
to have promise.

Almost all of these contributions focused on buifginew tools to
uncover groups or communities. They all reporfggliaations to data, but
for the most part, their applications were merilystrative. The main thrust
of this research has been to build better andrfgsteip-finding algorithms.
That preoccupation with developing ever faster iatlgms may not seem too
important to most social network analysts, but majpglications—
particularly those in biology—involve data setsttim@olve connections
linking hundreds of thousands or millions of nodé®sr those applications
speed is essential.

Positions

Concern with the positions occupied by individuetioas has been the
second main theme in social network analysis. kows of positions have
been defined. First, positions in groupssre andperiphery—have been
specified. Second, a good deal of attention has bscused osocial roles.
Third, some attention has also been devoted tettity of the positions of
nodes irhierarchical structures. And fourth, social network analysts have
been concerned with the structucahtrality of nodes in networks.



Core and peripheral positions in groups were fiefined by early
network analysts, Davis, Gardner and Gardner (19A%)they described this
idea (p. 150):

Those individuals who participate together most often and at the
most intimate affairs are called core members; those who
participate with core members upon some occasions but never
as a group by themselves alone are called primary members;
while individuals on the fringes, who participate only
infrequently, constitute the secondary members of a clique.

Various others followed up on this observation alybrithms for finding core
and peripheral positions in groups were proposeBdnacich (1978),
Doreian (1979), Freeman and White (1993) and Skeza@ned Faust (1999).
Finally, in a pair of articles, Borgatti and Evergt999) and Everett and
Borgatti (2000) developed a full model of core/phary structure.

The intuitive idea of social role was introducedtbg anthropologist,
Ralph Linton (1936). The notion was that two induals who were, say,
both fathers of children, occupied a similar positas a consequence of their
being fathers. They could, it was assumed, beatggddo display similar
behaviors.

This idea was spelled out by Siegfried Nadel (1%5%) formalized by
Lorrain and White (1971) in their model sifuctural equivalence. In that
model, two individuals are structurally equivalérthey have the same
relations linking them to the same others.

Other social network analysts concluded that stratequivalence was
too restrictive to capture the concept of socidd (&ailer, 1978). So they
were quick to propose other models that relaxeadbgictions of structural
equivalence. These includegular equivalence, isomorphic equivalence,
automor phic equivalence, andlocal role equivalence. These ideas are all
thoroughly reviewed in Wasserman and Faust (1994).



The third kind of positional model used in sociaetwmork analysis is
focused on hierarchies or dominance orders. Tudysif dominance began
with Pierre Huber’s (1802) observations of domireaamong bumblebees.
Huber was an ethologist, and most of the researdhmadel building about
dominance has remained in ethology. But Martindaau (1951), who was
both an ethologist and a social network analys@ated a formal model of
hierarchical structure for social network analysasid another social network
analyst, James S. Coleman (1964), proposed anatitexr model. More
recently, Freeman (1997) adapted an algebraic nfomalcomputer science
(Gower, 1977) to be used in social network analyaisd Jameson, Appleby
and Freeman (1999) took a model from psychologydiBdder and Simpson
(1988) and applied it to the study of social neksor

The fourth and final kind of model of social pasitiis based on the
notion of centrality. Alex Bavelas (1948) and Hdrbeavitt (1951) originally
developed the idea of structural centrality at@meup Networks Laboratory
at the Massachusetts Institute of Technology. irld@nception of centrality,
based on the distance of each node to all thethéhe graph, was used to
account for differences in performance and moraken organization.

Very soon a large number of other conceptions ofraéty were
introduced. Those based on graph theory werewedédFreeman, 1979) and
reduced to a set of three. They included Sabidug€966) measure based on
closeness, Nieminen’s (1974) measure baseddegree and Freeman’s (1977)
measure based detweenness.

In addition to these graph theoretic measures, @8ong1972, 1987)
introduced an algebraic centrality measure. Hissmesis based on the
concept okigenstructure; it is determined by a combination of the degrka o
node, the degrees of its neighbors, the degret®wnfneighbors and so on.

The community of physicists has not displayed aayominterest in the
first three of these kinds of positions developedacial network analysis.
Physicist Petter Holme (2005) did write an arted®ut core/periphery
structures. And in a review article, Mark Newmagn@3) introduced
structural equivalence to physicists. Petter Hodme Mikael Huss (2005)
reviewed the social network equivalence measuréspplied them in the
study of protein function in yeast. Finally, Jugddark and Mark Newman



(2005) introduced a new model of dominance andiegj to ranking
American college football teams.

The physicists, however, were quick to adopt teasdabout centrality
that had been developed in social network analysigd they immediately
passed them on to biologists. Figure 4 displagstimber of articles on
centrality published each year by social networklygsts and the number
published by physicists and biologists. It is cligeat once they began
publishing in this area, the physicists and bidtgyquickly overtook the
social network analysts.

Figure 4. Articles on Centrality by Date and by Feld (From
Freeman, 2008)

In working with centrality, though, the physicist®k a very different
approach than the one they used when they dedlttmetgroup or community
concept. As we saw above, most of their contrdmgtito the study of groups
involved the development of new models and thedhiction of refined
procedures for finding groups. But, with centrast most of the physicists’
work has involved applications; they simply fourehnproblems to which
standard centrality measures could be fruitfullplegal.

Many of the areas in which physicists applied cdityrmay seem quite
surprising. Only a few of their applications fato what most outsiders
would think of as belonging to physics. Theseudel packet switching in the
internet, electronic circuitry and the electric mywrid (Freeman, 2008).

A great many more of these applications involvasaithat traditionally
are considered to fall in the domain of social reknanalysis. These include
studies of friendships linking students, contact®lag prisoners, emalil
contacts, telephone conversations, scientific boliation, corporate interlock
and links among sites in the World Wide Web (Freen2908).

By far the most common application of centrality fe@en to problems
in biology. This work was started by physicistsdidg, Mason, Barabéasi and
Oltavi, 2001) who studied interactions among pregeiBut, almost
immediately, biologists themselves began to us&akty ideas in their
research. Two biologists, Wagner and Fell (206&)@ned centrality in a
study of metabolic networks. And a year later[folecular biologists,
Vendruscolo, Dokholyan, Paci and Karplus (2002dusentrality in a study



of protein folding. These three themes, proteitgin interaction, metabolic
networks and protein folding have all come to tebavily on the use of
various centrality models and have produced a giealtof research
(Freeman, 2008).

Summary and Conclusions

In social network analysis we have a field witload history. It began
in the late 1930s. And it emerged again and aigadlifferent social science
disciplines and in various countries. But in tl9&Qs all these separate
research efforts came together and merged intogdestoherent research
effort embodying a structural perspective.

But in the late 1990s a new kind of situation aro8 completely alien
field, physics, embraced the same kind of strutpeespective that was
embodied in social network analysis. Moreoverpadgmany of these
physicists did not limit their research to the pbgbkrealm, but studied the
patterning of links among social actors. One phgsiT. S. Evans (2004),
reported on this trend to his fellow physicists:

If you are naturally skeptical about trendy new areas of physics
and attempts to mix physics with anything and everything, then
the citations of papers in journals of sociology . . . and of books
on archeology and anthropology . . . may just be the last straw!

Thus, though it may not be mainstream physiceagtlsome physicists have
defined social network analysis as a proper pattaf discipline.

To understand how this occurred, we need to loghgsics and
biology in the late 1990s. Both fields were sudgéaced with mammoth
amounts of structural data. In physics, data ernriternet became available.
These data involve millions of computers, all lidkey wires, fiber-optic
cables and wireless connections. And in biology @& genetic and
metabolic networks was being produced by all theogee research. In both
fields investigators were confronted with data emMarge networks.

These investigators needed tools—both intellecundl
computational—that would help them to grapple withse huge new network
data sets. So they turned to a field that had deafing with network data for



Sixty years, social network analysis. They drewd®as from social network
analysis and they used analytic tools developdldanfield. They refined
existing tools and developed new ones. Sometihesreinvented
established tools and sometimes they rediscoveredik results, but often
they contributed important new ways to think akbend analyze network data.

More important, at least some of these physiciat®become
increasingly involved in social network researdtey have developed new
tools aimed toward the study of social networks tf¢vand Strogatz, 1998).
They have reanalyzed standard social network ddsa(&irvan and Newman,
2002; Holme, Huss and Jeong, 2003; Kolaczyk, CimdaBarthelemy, 2007;
Newman, 2006).

Physicists have increasingly begun to cite so@éalvork articles.
Girvan and Newman (2002), for example, cited 8aauetwork articles
among their 29 citations. Fortunato, Latora anddW@ari (2004) cited 9
social network articles in 27 citations. And Heland Huss (2005) cited 5 in
34 citations. On the other hand, most social ngkvaoalysts have resisted
citing physicists. Many, | suspect, still view thieysicists as “alien invaders.”

Physicists have used computer programs producsddgl network
analysts in their data analyses, and they haveupestinew programs that
include some of the models developed in social ogtwnalysis (Freeman,
2008). In addition, a few physicists have attenitiedannual Sun Belt social
network meeting8. And a few social network analysts have been éavib
the meetings of the physicistsRepresentatives of each discipline are
beginning to publish in journals usually associatétth the othef. There are
even some joint publications (e. g. Reichardt art®y2007; Salganik,
Dodds, Sheridan and Watts, 2006).

My earlier hope for rapprochement between physicssamcial network
analysis, it seems, is beginning to take placd.thalt is required now is that
the social network analysts relax their claim ohewnship of the field. The

6 Freeman (2004, p. 166) mentions the attendanpbyaicists Watts, Newman and Hoser at the

social network meetings.
! Social network analysts, Vladimir Batagelj aridtbn Freeman were invited to the Summer
Workshop in Complex Systems and Networks put ophsicists in Transylvania in 2007.

See, for example, physicists Watts (1999), Holawing, Liljeros (2004) and Newman (2005)
publishing inSocial Networks or network analysts, Borgatti, Mehra, Brass ankii&aca (2009) appearing in
Science.



physicists are making important contributions taatmtould easily end up as a
collective effort’
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